Perl Lesson 1

Hello World!

What you will learn

« What perl is and what it is good for

« How to create a perl script in Linux

« How to run a perl script in Linux

e Output to the Screen

e Scalar Variables

 Dealing with User Input

« Comparison Operators and when to use them

e Exercises/Homework

CSID Proprietary & Confidential

What perl is

CSID Proprietary & Confidential

What perl is and what it is good for

Practical Extraction and Report Language?

Pathologically Eclectic Rubbish Lister?

Larry Wall, the Father of Perl, will agree to both of these acronyms. Perlis an
excellent parser, web page, database interface, report writer, e-mailer, shell
script, daemon, OS interface, security and encryption tool, image
manipulator, file handler, programming language interface(wait, what does

that even mean?), and most of all it is still the glue of the Internet!

Oh, did | mention it runs IMARS?

CSID Proprietary & Confidential

How to install perl in Windows

CSID Proprietary & Confidential

How to install perl in Windows
Open your browsers and goto:

e http://padre.perlide.org/

Click on “Download” in the upper right corner:
% Padre, the Perl IDE Downloaddgh

Perl Application Development and Refactoring Environment

Home Screenshots Documentation Support / Contact us Get Involved People Wiki About L

Now click on “DWIM Perl 5.14.2.1 (v7)”:

Windows @

Download DWIM Perl 5.14.2.1 (v7).

Released on 12 Feb 2012, the DWIM Perl for
Windows package contains

After the download is complete, please install the software package.

CSID Proprietary & Confidential

How to install perl in Windows

Now that you have installed perl, please open Parde.

£ ==

File Edit Search \View Perl Refactor Run Debug Tools Window Help
(BHEEHBS R e $DREIR# 82 >o/®..X
| unsaved1 x|
1]

|

4 I F

Perl5 WIN 1,0 0% R

Parde is a perl IDE and is where most of this class will take place. | figured that it
would be easier to teach perl in Windows than it would be to try and have

everyone use vi on Linux.

CSID Proprietary & Confidential

How to install perl in Windows
Now we are going to write your first perl script! You should have Parde open and
there should be a window to type in. On the first line please add the following line
of code:

#!/usr/bin/perl

This line of code simply lets the OS know that it’s dealing with a perl script and
where to find perl.

Now let’s save the file as my first _perl.pl, you should be able to figure out how to
do this. After you have finished saving the perl script we need to run it. In Parde
the default “run” hotkey is F5. Please hit F5 now! You should now see this window

& ==
PESE an ey to continue . . . -

CSID Proprietary & Confidential

How to create a perl script in Linux

CSID Proprietary & Confidential

How to create a perl script in Linux

A perl script is a simple text file that gets complied at run time. This means there is no
need for any fancy Ul or text editor. | only code perl in vi.

Command for creating a perl script:
vi my_first_perl.pl

Now we need to add the below string to the beginning of the file. This lets Linux know
that it's supposed to interrupt the file as a perl script.

#!/usr/bin/perl

Please save the file and return to a Linux Prompt. Now we need to make the script
executable. We do this with chmod:

chmod a+x my_first_perl.pl
Now lets run it.
Jmy_first_perl.pl

The script should just return a blank line and give you the Linux prompt again.

CSID Proprietary & Confidential

Output to the Screen

CSID Proprietary & Confidential

Output to the Screen
Now that we have created at least one script it’s time to start learning how to
control perl. Lets try a Hello World script! Please input the following into the Parde

window.
#!/usr/bin/perl
print “Hello World\n";

Now that you have added the code to your script please hit F5 to run it. Do you see
the below window?

— (= | B |-t

Hello World
Press any key to continue

CSID Proprietary & Confidential

Output to the Screen

Lets breakdown the different parts of what you just programmed. We already know
that the first line is for letting the OS know what type of file this is, so lets skip it.

There are 5 parts to the below command.

print “Hello World\n";

1. print, This lets perl know that you are trying to output something to the
user. This could be printing to the Screen(STDOUT), a file, or even to a device
like a printer.

2. Quotation Marks, These let perl know what you want to output.

3. Hello World!, This is simple. This is what gets output.

4. \n, This lets perl know that you would like a newline after the output.

5. Semi-colon, This is how perl knows that it needs to stop expecting

information to output. Really this is how all commands in most programming
languages are completed.

CSID Proprietary & Confidential

Output to the Screen
Lets go into \n a little deeper.

\n, This represents a new line however there are two parts to this command.

1. '\, Thisis a back slash. It’s also considered the escape character in perl.
This means it will allow a special function to be followed based on the next
character. It can also be used to stop perl from interpreting normal syntax, such

as a Quotation Mark.

2. n, This lets perl know what you want to do now that you have escaped.
e n,isused tooutput a newline
e 1, isused tooutputatab

e There are many others, mostly used for regex(don’t worry about regex
that will be covered in a later lesson)

CSID Proprietary & Confidential

Variables

CSID Proprietary & Confidential

Variables

Variables are containers that store sections of data.

Some common variable types in programming are:

1.

A

Integer, This is a whole number. ‘1’,’10’, 100’

Floating Point, This is a real number, or a number with a decimal point.
Boolean, True/False, On/Off, 1/0

String, This holds a word or a sentence

Array, This is a Variable that hold more than one Variable and is indexed on
a numeric scheme

Multi Dimensionally Array, This is a variable that holds more than one Array
and is indexed on a numeric scheme

Associative Array, This is an array that’s index is defined by the program it’s
self, it doesn’t use numbers for an index. But it could if you wanted.

CSID Proprietary & Confidential

Variables
Perl is pretty unique as to how it deals with Variables. Here are the three variable
types that perl uses: Scalar, Array, and Hashes.

Scalar Variables are used by perl to cover the following variable types: Integer,
Floating Point, Boolean, and String.

Svar = “variable”;
Sfirstname = “Michael”;
Semail = “mstpehens@csid.com”;
Arrays in perl are just like most other languages.
@vars = (“variablel”, “variable2”, “variable3”);
@firstnames = (“Michael”, “David”, “Adrian”);

@emails = (mstpehens@csid.com, jross@csid.com, robot@lifelock.com)

Hashes are used by perl to cover Associative Arrays(Hashes are pretty powerful,
lets cover these in their own lesson)

CS CSID Proprietary & Confidential

Variables

As | said perl is pretty unique as to how it deals with Variables. Here are somethings
that make it unique:

No need to declare Variables before they are used
No declaration of Variable Types; not counting Scalar, Array, or Hash

Variable Types are identifiyed by their cast character; S = Scalar, @ = Array,
and % = Hashes

There is no such thing as an Integer, not really anyway
There is no such thing as a Boolean, not really anyway

Scalars can convert Integers, to Floating Points, to Booleans, to Strings, and
back again. This assumes that a certain degree of data loss is ok. For
example, a Floating Point Variable would loose any decimal points if
converted to an Integer but, it would keep all of the decimal points if it was
converted to a String.

CSID Proprietary & Confidential

Variables
Lets play around with some Scalar Variables. Please enter the following code and

hit F5 to run it.
Svar = “Hello World!”;
print Svar;
What happened? Did it print out “Hello World!”? Is it missing anything?

You might have noticed that it printed “Hello World!” to one line and then the text
“Press any key to continue...” was printed right after the exclamation point. This is
due to the lack of a \n, or newline. Lets add the newline to the code and hit F5.

Svar = “Hello World!”;
print Svar\n;

Did it print what you expected? What is wrong with this code and how can we

fix it?

CSID Proprietary & Confidential

Variables
Lets fix the code, here are two different ways to fix it.

We can add the \n to Svar.
Svar = “Hello World!\n”;
print Svar;

Or we can enclose the variable in Quotation Marks and add \n to the print
statement.

Svar = “Hello World!”;

print “Svar\n”;

Both of these examples will print the same thing. Please try both now.

CSID Proprietary & Confidential

Dealing with User Input

CSID Proprietary & Confidential

Dealing with User Input
| hardly ever write perl scripts that will take user input that isn’t on the command
line but, it’s a quick and easy method of changing variables with each run. So lets
learn about Standard In <STDIN>. Standard In is a method of taking input. When
<STDIN> is called in perl the script will pause until a carriage return(Enter) is
entered. Please type in the following code and hit F5:

print “Who is the best boss in the world?”;
Svar = <STDIN>;
print “Svar is the best boss in the world!\n”;

Did that come out as you expected? What two things should be fixed and how do
we fix them?

bho is the best boss in the world?Ken

Ken
iz the best bo=s=s in the world?
Press any key to continuwe . . .

CSID Proprietary & Confidential

Dealing with User Input
The two things that | see wrong with this script are:

1. There should be a space in between the Question Mark and where we start
typing our answer.

print “Who is the best boss in the world?”;
Becomes
print “Who is the best boss in the world? ”;

2. Our answer is on a line all by itself. This is because <STDIN> will include the
carriage return. To deal with this we need to learn a new command called
chomp. Chomp will remove the last character of a variable if it is a \n. It’s
simple to use this command as well. Try adding this to your code and then hit
F5

Svar = <STDIN>;
chomp Svar;

print “\nSvar is the best boss in the world!\n”;

CSID Proprietary & Confidential

Comparison Operators and when to use them

CSID Proprietary & Confidential

Comparison Operators and When to Use Them

Comparison Operators are how perl is able to apply your logic in the script. These
are things like equal, not equal, greater than, less than, greater than or equal, and
less than or equal. Since perl lets you move one variable type into another variable
type on the fly there are different Comparison Operators for Numeric and String
values. How you call the Operator is how perl will decide if you are looking at a

variable as a Number or a String.

Equal == eq
Not equal I= ne
Less than <
Greater than >
Less than or equal <=

Greater than or equal >=

CSID Proprietary & Confidential

If Statements

If statements are how perl applies Comparison Operators to make your logic come

to life. When an If statement is found to be true then a section of code below it will

be executed.

35 > 5 TRUE
35 1= 45 TRUE
35 = 45-10 FALSE
35 eq ‘35.0' FALSE

‘CSID' eq ‘CSID' TRUE
‘CSID! eq ‘csid" FALSE

CSID Proprietary & Confidential

If Statements
If statements are fairly simple to build, use, and to understand. Type the below
code in and try to run it.

print "Who is the best boss in the world? “;
Svar = <STDIN>;
chomp Svar;
if (Svar eq 'Ken') {
print "Svar is the best boss in the world!\n";

)

Now try both of these strings: “Ken” and “ken”.

Do you understand what happened when you entered “ken”.

CSID Proprietary & Confidential

If Else Statements
Else statements allow code to be run when the If statement isn’t found to be true.
Lets add the blow code to our script.

if ((Svar eq 'Ken') or (Svar eq ‘ken’)){
print "Svar is the best boss in the world!\n";
} else {
print "l don't believe you know what you are talking about\n";

}

Now try and run the and enter anything other than “Ken” or “ken”.

CSID Proprietary & Confidential

What you have learned

« What perl is

« How to create a perl script in Linux
« How to run a perl script in Linux

e Output to the Screen

e Scalar Variables

 Dealing with User Input

« Comparison Operators and when to use them

CSID Proprietary & Confidential

Exercises/Homework

CSID Proprietary & Confidential

Exercises/Homework

CSID Proprietary & Confidential

Thank You

CSID Proprietary & Confidential

